3.0 Multifamily Design Guidelines

(Note: bold typing indicates sections that have been added or modified from the currently adopted Design Guidelines.)

The purpose of this chapter is to provide planning and design guidelines for multifamily development that supports those goals and objectives of the County general plan that provide for residential development that is a positive addition to the community.

The multifamily design guidelines and standards apply to all residential projects of eight dwelling units per acre and greater. This wide range of attached and detached housing products, include apartments, townhomes, and small lot single-family projects. The small-lot single-family guidelines are supplemented by the standards in Chapter 2.0.

The process for using these design guidelines is to;
 A. Determine the Community Context and Housing Category Type (3.1)
 B. Respond to Site Design standards (3.2)
 C. Apply the Building Design Standards (3.3)
 D. Apply the Landscape/Site Elements Design standards (3.4)

3.1 Context and Housing Types

It is the intent of these multi-family design guidelines to support multi-family development that is consistent with the applicable provisions of the Sacramento County General Plan.

A major goal of these design guidelines is to help new multifamily development be context sensitive and fit within the surrounding community, both existing and proposed. The following sections illustrate the process to be used to determine the Community Context that applies to a development site and the appropriate Housing Type for use on it. It is important to recognize that the County of Sacramento contains diverse communities and undeveloped areas that vary in character from rural to urban

3.1.1 Community Context Types

Knowing the existing zoning of the surrounding community is a simple step in determining the community context type of the site. This section outlines the process of determining the community context type and the eventual multifamily development category that may be appropriate within each predominant community context.

Step 1: Identify the Community Context Type
Three major community context types for purposes of evaluating multifamily projects have been identified in Sacramento County.

Community Context Type A consists of small agricultural communities of predominantly large and small rural residential lots, agricultural parcels, and some smaller scale agricultural related retail uses.

Community Context Type B consists predominantly of single-family residential subdivisions, along with larger estate lots, and supporting neighborhood retail centers.

Community Context Type C consists of a range of existing neighborhoods with predominantly multifamily housing types, small lot single-family, and surrounding commercial and industrial activities in a more urban setting.

Representative zoning districts for this context type are shown in Table 3.1

TABLE 3.1: LAND USE ZONES AND COMMUNITY CONTEXT TYPE DETERMINATION

<table>
<thead>
<tr>
<th>LAND USE ZONES</th>
<th>EXISTING ZONING DISTRICTS</th>
<th>MAXIMUM HOUSING DENIETY</th>
<th>ADJACENT COMMUNITY CONTEXT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>AG-160</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AG-80</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AG-40</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AG-20</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>UR</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>IR</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td>Interim General and</td>
<td>All</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td>Limited Agricultural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Residential</td>
<td>AR-10/A-10</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AR-5/A-5</td>
<td>N/A</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AR-2/A-2</td>
<td>2 ac/unit</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>AR-1</td>
<td>1 ac/unit</td>
<td>Context Type A</td>
</tr>
<tr>
<td>Interim Estate</td>
<td>RE-2/2A</td>
<td>2 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RE-1</td>
<td>4 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RE-3</td>
<td>Unknown</td>
<td>Context Type A</td>
</tr>
<tr>
<td>Residential</td>
<td>RD-1 or R-1-A/B</td>
<td>1 unit/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RD-2 or R-2/A</td>
<td>2 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RD-3 or R-3</td>
<td>3 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RD-4</td>
<td>4 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RD-5</td>
<td>5 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RD-7</td>
<td>7 units/ac</td>
<td>Context Type A</td>
</tr>
<tr>
<td></td>
<td>RM-1</td>
<td>8.5 units/ac</td>
<td>Context Type B</td>
</tr>
<tr>
<td></td>
<td>RM-2</td>
<td>8.5 units/ac</td>
<td>Context Type B</td>
</tr>
</tbody>
</table>
These Multi-Family Design Guidelines complement the Zoning Code for the districts described for each context type by providing urban design and architectural direction not contained within the Zoning Code and that are consistent with County planning policies. (See Appendix A.)

An analysis of the appropriate community context within which a given project occurs is the first step in assessing appropriate design strategies for residential neighborhoods that meet the compatibility and livability goals of the Sacramento County General Plan.

Step 2: Determine the PredominantAdjacent Context Type

The second step is to identify and measure the predominant adjacent context type. The methodology for this determination follows the calculation below:

1. Calculate the linear feet of the site perimeter that is shared with each context type group, excluding street frontages.
2. Refer to Table 3.1 for guidance on appropriate context type determination.
3. Divide the total number of linear feet for each context type group by the total shared site perimeter of the property.
4. The category that shares at least 60 percent of the total shared perimeter will determine the community context type of the project. In cases where the project site

<table>
<thead>
<tr>
<th>LAND USE ZONES</th>
<th>EXISTING ZONING DISTRICTS</th>
<th>MAXIMUM HOUSING DESITY</th>
<th>ADJACENT COMMUNITY CONTEXT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>RD-10 10 units/ac</td>
<td>Context Type B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RD-20 20 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RD-25 25 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RD-30 30 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RD-40 40 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>SC 20 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC 20 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GC 40 units/ac</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC Not Permitted</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC Not Permitted</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>MP Not Permitted</td>
<td>Context Type C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-1 Not Permitted</td>
<td>Context Type C</td>
<td></td>
</tr>
</tbody>
</table>
is adjacent to two or more context types, the project site category will be determined to be the lower of the adjacent context type group. An example of the calculation appears in Figure 3.1. **Property X is adjacent on three sides with properties in two zoning districts as follows:**

On the west, Property X measures 150 linear feet and is adjacent to RD-7;
On the north, Property X measures 180 linear feet and is adjacent to RD-7;
On the east, Property X measures 150 linear feet and is adjacent to RD-5; and
On the south, Property X measures 180 linear feet, and is adjacent to a street.

Calculations to determine the category for the multifamily development project will be as follows:

1. West - Adjacent to RD-7 (Context Type B) = 150 feet
 North - Adjacent to RD-7 (Context Type B) = 180 feet
 East - Adjacent to RD-5 (Context Type A) = 150 feet
 South - Adjacent to street - not included in the calculation

2. Perimeter of the property = 480 feet
 Total linear feet for Context Type A = 150 feet
 Total linear feet for Context Type B = 330 feet

3. Total linear feet for Context Type A ÷ Perimeter = 150 ÷ 480 = 0.30 = 30%
4. Total linear feet for Context Type B ÷ Perimeter = 330 ÷ 480 = 0.70 = 70%

Since Context Type B is more than 60 percent of the project site shared perimeter, and Context Type A is 30 percent of the project site shared perimeter, Property X would be classified as a **Context B Type** site.
Step 3: Determine the Appropriate Multi-Family Housing Category Type.

Some multifamily housing designs are more suitable than others for each community context type in Sacramento County. Development guidelines and standards have been organized to locate the appropriate building scale, setbacks and building heights to reflect each community.

Thus, multifamily development projects have been organized into three categories to correspond to each context type.

- **Category I** multifamily projects are suitable for a site that shares at least 60% of its perimeter with Context Type A properties.
- **Category II** multifamily projects are suitable for a site that shares at least 60% of its perimeter with Context Type B properties.
- **Category III** multifamily projects are suitable for those sites that share at least 60% of its perimeter with Context Type C properties.

The development standards also take into account the characteristics of adjacent collector and arterial streets, and roadway corridors. Multifamily sites which are adjacent to
collector streets, arterial streets or highways may increase their building massing, heights, and densities as outlined in this document.

The dimension of the site adjacent to a future planned street widening for collector, arterial, highway or a similar major street will be excluded from the calculation.

Figure 3.2: Examples of Category determination based on surrounding context type

3.1.2 Multifamily Category Types

These design guidelines establish three categories of multifamily design criteria consistent with the context type of adjacent existing communities.

Category I Multifamily Projects

Category I projects will be located in areas with mostly very low- and low-density residential uses, rural residential areas, and large single-family estate lots with adjacent agricultural lands (five units per acre or less). This category of multifamily projects would likely occur along or next to major transportation corridors where multifamily
residential and commercial uses are typically found. Projects developed as Category I sites should locate buildings further from property lines, with an emphasis on landscaping to buffer buildings and surface parking lots. Buildings should be no more than two stories in height. Sidewalks, if present, should have landscaped parkways between the curb and sidewalk.

Category II Multifamily Projects

Category II projects will be located in areas with mostly low-density and medium-density residential uses (seven to 15 units per acre). Multifamily projects often occur along major transportation corridors where existing multifamily residential and commercial uses are found. Category II projects should be set back from surrounding properties so that their greater mass will not overwhelm adjacent properties. Landscaping should be provided along property lines to soften the transitions between the multifamily units and adjacent single-family development. Buildings may be as tall as four stories interior to the lot and closer to the streets, but should be designed to maintain privacy for any adjacent single-family properties. Wherever possible, sidewalks should provide a landscape buffer between the sidewalks and curb.

Category III Multifamily Projects

Category III multifamily projects will be located in areas mostly urban in character with surrounding high-density residential uses (more than 15 units per acre) as well as commercial, mixed use or industrial uses. Sidewalks are usually present, in some cases buildings are built to property lines. Category III projects may have four or more stories closer to the street. The most intensely developed Category III projects may provide structured or podium-style parking. Category III projects may also be mixed use projects, with commercial uses on the first floor, and residential units above. Mixed use projects shall comply with guidelines and standards outlined in the Chapter 6.0 Village Center / Mixed Use District Design Guidelines.

Category I and II projects may be allowed to step up to the next higher multifamily category along major transit-oriented corridors, major arterial and collector roadways. These include projects in Corridor Plans, Transit-Oriented Districts, Special Planning Areas, and non-residential Neighborhood Preservation Areas (special overlay) subject to the approval of the Planning Commission through the Conditional Use Permit and Design Review process. The application of these Housing Category Types is found in individual sections below.
3.1.3 Multifamily Housing Types

A range of housing types can be provided within multifamily districts. These building types may include: garden apartments, two- and three-story walk-up apartments; row houses or town-houses; small-lot single-family homes; four-, six-, and eight-unit apartment buildings; clustered buildings; podium apartments; mid-rise and high-rise towers; duets and duplex buildings; and “pull” apart town house designs (Refer Figure 3.3).

All the described multi-family housing types shall adhere to the applicable standards of the Zoning Code unless alternatives can be justified by provisions of these Design Guidelines.

It is the intent of these Design Guidelines to allow for maximum design flexibility to achieve a quality residential environment. The development standards are intended as a general guide, and creative and innovative designs are highly encouraged.

These design standards provide the minimum requirements to maintain compatibility with surrounding neighborhoods, increase safety and security for the residents, and create a higher quality environment and a strong sense of place in Sacramento’s communities. Creative and imaginative design solutions for multifamily designs are encouraged.

These guidelines cannot address all specific conditions or possible solutions to site and building design. Architects and building designers are continually creating new and imaginative solutions to multifamily housing design that would also be applicable to multifamily housing zones.

It is the intent of these design guidelines to allow for maximum design flexibility to achieve a quality residential environment.
Figure 3.6: For Small-lot SFD Densities, refer to Single Family Design Guidelines

Figure 3.6: Multifamily housing prototypes (Cont.)
Apartments

Apartment buildings can be single multi-unit buildings or clusters of multi-unit buildings. They are often multi-floor and can be designed for general or specific type occupants. Their occupants share communal open space and parking facilities. When clustered they commonly have a unified design and/or theme.

Townhouses

Townhouses (and row houses) can be attached single-family homes, a duplex, a triplex, or more units in a multifamily zone that is owned in fee simple, and may include the land on which the structure sits. Detached townhouses are a series of buildings having no common walls or foundations with the adjoining townhouse and minimal separation between buildings, while attached townhouses share common walls and foundations with the adjoining townhouse. Detached townhouses (or pull-apart townhouses) are often designed as small two or three-story homes with separations between buildings. In no case, however, would the number of units in the townhouse development exceed the density permitted by the multifamily category designation of the site.

Small-lot Single-family Housing

Small-lot single-family development bridges the gap between conventional single-family housing and larger multifamily housing, creating a continuum of housing opportunities. Small-lot single-family housing tends to be more affordable than conventional single-family developments, providing an opportunity for home ownership, particularly for first-time homebuyers and older adults without children. Homeownership opportunities in neighborhoods benefit from residents strongly invested in the community. Small lot residential single-family homes may be constructed in any multifamily zoning designation subject to County requirements for achieving the minimum density as a percentage of the maximum density permitted in that zone.

Small lot single-family developments shall follow all guidelines as outlined for multifamily developments in this chapter and as supplemented by those in Chapter 2.0 Single Family Design Guidelines.

3.2 Site Design

3.2.1 Neighborhood Compatibility

Design Principle

Multifamily developments should be compatible with surrounding neighborhoods while providing a quality living environment. Good site planning and project design should minimize impacts on existing and planned adjacent uses. Project design should address traffic, relationship or access to transit, parking, circulation and safety issues, control of light and glare, noise, odors, dust, and security. Site layout and design should create a clear definition and relationship between the public and private realm. Neighborhood compatibility can be achieved through control of semi-public and semi-private spaces, landscape, and building details to improve the safety and security of residents.
Rationale
Appropriate multifamily design that fits the context and surrounding neighborhood helps maintain property values, increases the safety and security of all residents, promotes a “sense of place” and neighborly interaction, and improves the overall quality of life for the community.

Building Orientation
Design Guidelines
• Harmonize with surrounding uses and improve the overall appearance and character of the neighborhood through building massing, scale, heights, and style.
• Long expanses of windowless, blank walls are to be avoided. All building facades are to be treated aesthetically with changes in materials, colors, artwork, use of pilasters, building lines, ornamentation, and/or other aesthetic treatments; and, should utilize durable quality materials.
• Orient buildings to adjacent public streets by providing entryways, windows, porches, stoops, balconies, and other active spaces along street frontages. Active spaces oriented to the street provides for visual access, surveillance, and control over public realm, increasing safety and security for the users.
• Locate surface parking lots to the sides and rear of the lot with building massing oriented to the street, to the greatest extent possible. Provide parking lots with adequate lighting and security as a safety feature.
• Arrange multifamily residential buildings to provide functional, public and private outdoors spaces for the use of residents. Centrally locate active common open spaces such that they are easily accessible to all residents.
• Design and landscape street setbacks to create an attractive and varied streetscape. Include landscaping elements such as shade-trees, shrubbery, and ground cover. Avoid large expanses of hard surfaces, paving, rock and bark cover.
• Design building orientation to access and use solar energy.

Connectivity
Design Guidelines
• Provide connections between new projects and adjacent neighborhood streets and pedestrian and bicycle paths. Connecting streets should be designed with appropriate widths to discourage overloading traffic on existing streets. Provide for future connections to currently underdeveloped properties.
• Allow for future connections to currently underdeveloped properties. Gated communities are discouraged in locations where there is good opportunity for connectivity to adjoining neighborhoods. Gated communities may be appropriate for some projects.
• Disperse access to new development by providing more than one entrance and exit.
• Create slower, pedestrian-oriented residential streets within the project site and its surrounding neighborhood through traffic calming measures such as traffic circles, chokers, and narrower streets, to the greatest extent possible.

• Design connectivity with adjacent developments via internal drives and biking or walking trails.

• Allow pedestrian movement to and along sidewalks to be clear and unobstructed. **Use of separated sidewalks is encouraged.**

• Design pedestrian paths and access to be clearly visible during the day and well lit after dark.

• Spatially define and activate streets and common open space areas with building entries and storefronts (if a mixed-use project).

• **Define major connectivity routes with hierarchal landscaping treatment.**

Street Elevation

Design Guidelines

• Design the building elevation along public streets with respect to its surrounding context. The design should foster an appearance of a residential neighborhood, with articulation and scale, particularly at street level, reflecting the character, rhythm, height, and massing of nearby residential buildings.

• Provide entries that allow residents to “see and be seen.” Integrate entries with second floor elements such as balconies and decks. Building entries, including doors, porches, and stoops should be the predominant feature of street fronting buildings.

• Discourage long expanses of windowless, blank walls. Allow direct views to the street from active spaces within dwelling units through windows facing the street.

• Discourage garages and on-site parking dominating building facades along streets.

“Good Neighbor” Design

Design Guidelines

• Projects should be mindful of adjacent developments through use of “good neighbor” design strategies such as massing and building orientation.

• Consider shade impacts on adjacent properties in site design.

• Consider the existing grade and topography of the site in building layout, height, scale, and massing to maintain compatibility with adjoining lower intensity residential uses. Taller buildings on hillsides should be stepped back or reduced in height when adjacent to lower intensity residential uses to maintain the privacy of rear yards, patios, and private outdoor spaces.

• Improve the visual quality of the streetscape with projects that complement, rather than replicate, the architectural style and character of the surrounding area.
- Minimize the potential for the disruption of privacy of adjacent neighbors/buildings through building design that restricts views directly into adjoining buildings, private open spaces, yards, and patios.

Corner Lots

Design Guidelines

- Create a strong relationship between corner lots and adjoining streets through elements such as wrap-around porches, bays, and entries.
- Create attractive building facades facing both streets through massing and design of corner lots.
- Create attractive building facades through well-articulated sides of buildings. Achieve articulation with windows, setbacks, entries, porches, and/or balconies. Provide windows with views onto outdoor spaces for additional security and visual interest.

3.2.2 Setbacks

Design Principle

Setbacks of multifamily residential structures should be compatible with the character and setback along the street and surrounding neighborhood. Multifamily developments constructed adjacent to single-family residences should reflect the larger setbacks of the neighborhood, whereas reduced setback may be appropriate in more urban areas.

Rationale

Building setbacks help establish the continuity and character of a neighborhood and help protect the privacy of neighbors. Appropriate setbacks provide a transition between public and private spaces, provide functional spaces for outdoor activities, allow for light, fresh air circulation within buildings, and provide spaces for landscaping, trees, ground cover, and shrubs.

Design Guidelines

- Provide building setbacks that reflect the surrounding context.
- Design site plans with variation in both the street patterns and the siting structures so the appearance of the streetscape does not become overly repetitive and monotonous. Avoid continuous rows of buildings with the same setback. Modulate and vary building setbacks to avoid monotonous streetscapes, create small outdoor places along the street frontage, and better define entries and front yards.
- Design the primary facade of buildings with varied setbacks to create an interesting and attractive street edge, while maintaining minimum average setbacks consistent surrounding properties and these Guidelines.
- Extend porches, stairs, and stoops into the front setback to articulate the building facade.
• Design setbacks between buildings so that spaces are usable or are part of the overall pedestrian scheme.

• Based on the Housing Category Type, setbacks that differ from the Zoning Code standards may be used as outlined in Table 3.5, measured from the street right-of-ways, providing that they can be justified as being in accordance to overall provisions of these design guidelines. Setbacks shall allow enough room for utilities, if greater than those outlined. Front setbacks shall be measured from the front property line or future front property line if street dedication is required for future rights-of-way. The intent is to provide for lesser setbacks in more urban, commercial settings (Category III projects). These alternative setbacks do not apply when located adjacent to single-family residential homes.

<table>
<thead>
<tr>
<th>TABLE 3.5: GENERAL SETBACK REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT SETBACK</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>

1 Setback requirements applicable to all surrounding use types, excluding single-family residential. For setback requirements adjacent to single-family residential, refer to Table 3.3.

2 Setbacks may be reduced equal to the average setback of building on adjacent lots.

3 A 15’ front setback may be allowed at the discretion of the Planning Director upon design review in projects located in urban areas, mixed-use projects, or where existing setbacks on adjoining lots are similar.

4 Setbacks on interior side yards above three stories or 35’ shall be increased 1’ in width for every 2’ in height up to a maximum setback width of 25’.

Setback from Existing Single-Family Residential Design Guidelines

Multifamily housing development design should complement adjacent single-family homes, and should reflect larger setbacks through variation of building heights and stepping back building heights from adjacent single-story structures.

Rationale

Existing single-family residents are often adversely impacted by adjoining multifamily projects due to increased noise, traffic, increased shading, light and glare, and unwanted visual intrusions into both indoor and outdoor private spaces and yards. Good design can resolve many compatibility problems between single-family homes and adjacent multifamily residents through the use of appropriate setbacks, screening, and control of scale and massing of multifamily buildings, particularly near the property line between single-family and multifamily properties.

Proper side yard and rear yard setbacks are critical to creating compatibility of scale and building massing.
Generally, single-family homes allow for minimum five-foot side yards, and minimum 20-foot rear yards. Multifamily dwellings should provide additional setbacks, landscaped screening along property lines, and limit the building lengths along property lines to reduce potential impacts on adjacent sites. Street widths provide sufficient distances and setbacks from existing single-family residences across the street.

Design Guidelines

- Consider the scale, character and location of the multifamily project and the type and width of the street in locating building massing on the site (i.e., portions of buildings with two or more stories and long building facades).
- Design building heights of new multifamily projects to be compatible with adjoining building heights to minimize potential impacts on adjacent single-family residences.
- Step back multi-story structures to reduce the bulk and mass adjacent to single family homes.
- Orient windows on multi-story structures away from single-family homes to the extent possible.
- Required setbacks adjacent to existing single-family residences shall not apply to front yard setbacks of sites with single-family residences across a street.

On-Site Building Separation

Design Guidelines

Multifamily buildings should be separated by a sufficient distance to maintain and protect the privacy of units facing one another, reduce unwanted noise, and provide for light, ventilation, and air circulation to the buildings and windows opening into common open spaces.

Rationale

Multifamily residential design often involves the organization on one site of several buildings separated by open spaces, paseos, parking lots, drive isles, and yards interior to the project. Buildings too close to one another can impact the livability of residences due to reduced privacy, intrusions of noise, and/or reduced light, air, and ventilation to individual units. Good building design and thoughtful placement of buildings and landscaping can help to create an attractive and more livable environment for residents.

This distance will maintain a sense of enclosure while providing sufficient separation for ventilation, light, air, and privacy of interior units. Buildings can be closer together at corners, or at ends of the buildings where windows, private outdoor spaces, and balconies are not directly facing one another. Small narrow interior yards (less than 5’ in width) often become left over unsupervised, unusable nuisance spaces that collect trash, garbage, and are seldom maintained. In some cases, however, tighter spaces, if relatively short in distance, can create attractive pedestrian alleyways leading to larger common open spaces, courtyards, and pedestrian plazas or leading to parking areas.
Design Guidelines

- Maintain separation between residential buildings sufficient to provide privacy between units and outdoor private open spaces and balconies.
- Orient windows, private balconies, patios, and courtyards between buildings to protect the privacy of users and reduce unwanted noise between units.
- Use fencing, landscape screening, and the orientation private outdoor spaces of units to protect the privacy of units facing one another in adjoining buildings.
- Eaves, balconies, porches, and other architectural elements can project into interior side yards and open spaces between buildings if the privacy of units is maintained.
- Staggering and offsetting of window, entries, balconies, and private patios can provide for greater privacy where buildings are closer together.
- Buildings can be located closer together where windows, entries, balconies, and private outdoor spaces are not facing one another.
- Staggering building facades along interior spaces creates additional variety and interest to the site and building design.
- Avoid small, narrow interior side yards with no functional purpose that can become nuisance areas without proper maintenance.

3.2.3 Open Space and Common Outdoor Amenities

Design Principle
Multifamily developments should provide easily accessible and functional open spaces and common outdoor amenities for residents. Open spaces may include all landscaped yards, planters, planted buffers and common recreation areas such as playgrounds, pools, picnic areas, tot lots, and community patio areas. Common open spaces should be provided as appropriate for the ages and number of residents living within the project.

Rationale
Well-designed and accessible common open spaces foster a sense of community within a multifamily project. Open spaces also encourage physical activities and are key to creating healthy communities. By making open spaces more accessible from adjacent livable spaces, a wide range of activities are generated within and around open spaces throughout the day. Visual surveillance of open spaces provides for safety and security of users. Open spaces and common amenities within multifamily projects offer the types of private and semi-private spaces associated with single-family residences.

Design Guidelines

- Provide pools, recreation facilities, tennis courts, spas, hot tubs, seating, water fountains, tot lots, and similar features as common open space amenities to serve different age groups, as appropriate.
- Landscaped stormwater quality design measures can be integrated and placed into open space areas to provide stormwater quality benefits and landscaping benefits.
• Locate and organize common open spaces such as parks, as large meaningful areas, and not unusable fragments. Emphasize doors, entries, windows and private open spaces opening onto these common areas to the greatest extent possible.

• Design open spaces connected by a comprehensive, on-site pedestrian circulation system to maximize accessibility and use by residents from all buildings.

• Locate and landscape open spaces, recreation areas, plazas and courtyards to take advantage of solar orientation, provide protection from wind, and afford shade during hot summer months.

• Provide recreation areas for children, unless a multifamily project is identified as an “adults only” or “senior” project. Provide appropriate amenities to serve anticipated residents (such as on-site child care and play lots for projects with families and children, less parking and more walking paths for senior housing).

• Locate common open spaces such as tot lots, children’s play areas, picnic facilities, pools, and similar amenities to allow maximum visibility from surrounding residences and streets.

• Locate common facilities such as laundry rooms, mailboxes, and community areas adjacent to common open spaces to maximize their visibility and activity.

• The Zoning Code requires that minimum of 30 percent of the total project site area be provided as landscaped open space including walkways, drive aisles, parking areas, etc.

For all multifamily projects of 25 units or more, a portion of all common open space shall include outdoor amenities such as, but not limited to, picnic tables and outdoor seating, pools, common patios, tot lots and play equipment, tennis courts, barbecue areas, hot tub, or other similar active recreation spaces for the residents.

• All small-lot developments shall provide a common open space with amenities if there is no neighborhood park or other available open space with recreational amenities within walking distance of residential units.

• All on-site outdoor amenities shall be preserved and maintained for the life of the project, unless otherwise approved by the Planning Director.

• Public and common use areas shall be accessible to and usable by people with disabilities.

• For townhomes and small lot developments, private yard areas may be counted towards total open space.

3.2.4 Private Open Space

Design Principle

Multifamily developments should provide easily accessible private open space to all dwelling units. There should be an emphasis on dwelling units opening onto private open spaces.
Rationale

Private open spaces provide for a pleasant and functional living environment for residents. Private open spaces act as transitional areas between public open spaces and the private and semi-private spaces of the dwelling unit. Private outdoor open spaces provide residents with an attractive outdoor place that can be used for outdoor eating, barbeques, small private gardens and flower beds, sunbathing, or simply enjoying the environment.

Design Guidelines

• Design usable open spaces such as porches, front yards, patios, decks, and balconies to qualify as private open spaces.

• Provide each dwelling unit with a private open space such as an at-grade patio, stoop, porch, or balcony for upper stories for the exclusive use of that unit.

• Provide private open spaces of a reasonable size to afford functional and comfortable outdoor living opportunities. Provide balconies and porches at a width deep enough to allow for a chair or small table to be used.

• Do not place amenities such as air conditioning and other mechanical equipment in private open spaces such that it may render the space unusable or fragmented.

• Locate private open spaces to take advantage of solar orientation, shade in the summer, and breezes to the greatest extent possible.

• Integrate decks and patios into the overall design of the building, such that it does not appear to be applied to the building facade.

• Personal storage spaces (storage closets) may be designed as extensions of private open spaces, decks, or porches, or placed within garages and carports.

• Encourage raised front porches or front stoops for ground floor units. The first floor level, if raised above the grade of the sidewalk directly in front of the front entrance, provides for greater privacy at the entry and improves surveillance of the public street.

• **The Zoning Code requires a minimum of 40 sq. ft. per dwelling unit of private open space, such as balconies and patios.**

• Ground floor private patio spaces may be counted as a subset of the overall 30 percent landscaped open space requirement.

3.2.5 Scale and Mass

Design Principle

The scale and mass of multifamily residential structures should be compatible with the adjacent neighborhood and vary based on character, scale, and edge conditions of surrounding existing developments.
Rationale
Stepping building heights, breaking up the mass of the building and shifting building placement can help mitigate the impact of differing building scales and intensities.

Design Guidelines
• Step down buildings at upper levels in neighborhoods with relatively smaller scale, particularly single-story, buildings on adjacent lots.
• Allow a scale transition between larger-scale buildings and smaller-scale buildings on adjoining lots.
• Use varied roof forms, mass, shape, and materials to create variations in building facades.
• Encourage variation in the number and mix of unit sizes to the greatest extent possible.
• Create varying front setbacks, staggered roof planes, and variety in orientation for units clustered into one structure. Avoid a monotonous or monolithic institutional appearance in favor of an appearance of distinct and articulated smaller attached buildings.
• Design buildings with a street facade which is complementary in scale and massing to its surrounding.
• Provide a sense of pedestrian scale at the ground level for buildings facing public streets and spaces through appropriate use of building materials, and details such as posts, wainscoting, decorative tiles, shutters, and window boxes.

Massing and Scale on Major Streets
Design Guidelines
Building massing and scale should be intensified along major streets and at intersections to define the street edge.

Rationale
Many multifamily housing projects are often located near or adjacent to major collector and arterial streets. These streets are four to six lanes wide and most often provide sufficient capacity to handle traffic generated by multifamily housing developments. Greater building massing along wider streets helps visually define the street edge and create a sense of place and street enclosure. In combination with appropriate pedestrian improvements and design features, such massing can help create a more interesting, pleasant, and safe street environment. It is also important to note that the location of multifamily housing along major streets raises several issues, which can be addressed through good design, such as controlling street noise, air quality impacts, and the quality of the street environment for pedestrians.

Design Guidelines
• Help define the street edge through the location of building massing and heights. Increase building mass and height proportional to the street width, with higher massing on wider streets and decreased massing on narrower streets.
Category III projects should have a greater massing along major streets with decreased setbacks and greater heights.

- Reinforce the pedestrian scale along the street edge through orientation of building entries, windows, stoops, front porches, and decks.
- Define the street corner and create a strong visual statement at intersections with taller buildings, design elements and massing on corners.
- Design building massing and height to be greater along the street edges and at corners of wider arterial and collector streets and stepped down in scale to be compatible with the scale and massing of lower intensity buildings on adjacent lots.
- On major collector and arterial streets with widths of 80 feet or more building heights may increase along the street front by an additional one story or 15 feet (whichever is greater) above the existing height limit, provided the setback standards adjacent to existing single-family residential lots are maintained.
- On major arterial and collector streets with widths of 80 feet or greater, front yard setbacks from the street, front property lines, or back of sidewalks should conform to the existing setback standard.

Height Limits

Design Guidelines

- Relate building heights closest to property lines to the height and scale of adjacent buildings.
- Allow buildings to have greater height in more intensely built areas. Greater heights (no height limit) are allowed and encouraged for Housing Category III projects.
- Require site specific design reviews based on sightlines to determine whether taller building design fits within the context of its surrounding.

Density

Design Guidelines

Multifamily developments should be within the ranges per existing zoning, except that Multifamily developments in Category III locations have no upper limit on density over the base zoning with the issuance of a Special Development Permit. For such higher density projects, overall community compatibility should be closely evaluated.
- Density requirements should also comply with other requirements, particularly with infill lots in existing neighborhoods.

3.2.6 Circulation

Design Principle

The visual prominence of vehicles should be minimized by siting parking areas to the rear or side of the property rather than along street fronts, and by providing underground
or partially underground parking. Surface parking areas should be screened from views exterior to the site. Parking shall be designed to minimize potential pedestrian-vehicle conflicts and impervious surfaces. A larger number of smaller parking areas are preferred to a smaller number of large parking areas. Parking should be configured to reduce the distance between a resident’s parking space and dwelling unit.

The location and design of driveways should minimize the impact of automobile circulation on the pedestrian environment and adjacent properties.

Paseos can supplement the role of streets and drives in the pedestrian circulation network. An accessible pedestrian paseo network may provide front door access to units and allow for higher overall densities. Paseos should be designed as pedestrian streets and allow for clear and comfortable access to common site amenities, the public street, and visitor parking.

Rationale

Planning for safer and efficient movement of vehicles and pedestrians can result in an aesthetically appealing site, increased pedestrian safety, reduced amount of impervious surface, and increased open space on site. Well-designed vehicle and pedestrian circulation within the development helps clarify the relationship between private and public spaces and areas intended primarily for vehicles versus pedestrians. Smaller driveways, curb cuts and parking areas can reduce barriers to pedestrian movement, improve the aesthetics of the site, and reduce development costs.

Design Guidelines

- Organize street patterns in multifamily site designs to be clear and understandable, supporting wayfinding (methods by which individuals orient themselves and navigate through an area) by users.

- Organize the circulation system of larger multifamily projects (80 units or more) as a simple hierarchy of streets, driveways, parking areas and alleys with at least two points of access to public streets where feasible.

- Encourage well connected pedestrian routes within the project site and to the surrounding neighborhood, with an emphasis on relationships to open space networks.

- Provide reasonable access for persons with disabilities.

Entrances, Exits and Connections

Design Guidelines

- Create internal circulation and connections between the project and the street to address the needs of pedestrians, bicyclists, and vehicles. If located along a transit route, provide convenient access to transit stops from multifamily projects.

- Design new projects that provide connections to adjacent development and allow for connections to future developments.

- Minimize total impervious surface resulting from pavement, sidewalks, and parking through use of landscaping and landscaped open spaces.
• Locate vehicular entrances and exits to provide for safe sightlines and distances from street corners and intersections.

• Provide adequate and well landscaped pedestrian ingress and egress from the development to public rights-of-way, bus stops, and public transit to reduce long walking distances.

• Connections through public and common use areas must be accessible to people with disabilities.

Public Streets

Design Guidelines

• Allow new projects to provide for as many on-street parking spaces as safely as possible.

• Design a planter strip between the curb and sidewalk as an additional buffer between the streets and pedestrians on the sidewalk, thereby increasing safety and allowing for street tree planting and as a stormwater quality benefit to help slow and reduce the amount of runoff to the street gutters.

• Multifamily developments in Category II and III should provide a minimum 5-foot wide planter strip between the pavement edge and sidewalk. In infill areas, sidewalks and planters may match the existing pedestrian environment, with the intent to separate sidewalks from the street wherever possible.

Internal Streets

Design Guidelines

• Design internal streets to connect to local landmarks or amenity features such as parks or community buildings, tot lots, or stands of large trees, if present adjacent to or near the project.

• Design internal streets to include landscaping and provide spaces and pedestrian amenities for social interaction such as small gathering areas, “gang” mail boxes, benches and seating, water features, and shaded areas.

• Provide traffic calming measures such as roundabouts, narrower roadways, on-street parking, chokers, and speed bumps along internal streets.

• Design internal streets with sidewalks to promote pedestrian activity within the development.

• On larger projects, provide loop circulation on internal streets to the greatest extent possible and minimize segregation of common open spaces.

• Develop projects that face internal streets to enhance the general livability, visual quality, and safety of the street.

• Design internal streets, parking lots, and driveways as parking courts that provide for additional outdoor hard surface play spaces by controlling traffic speed and movements. Such joint use of parking areas provides opportunities for additional social interaction between residents.
Consider designing narrower street sections where fire access is not required to reduce the amount of impervious area and enhance the appearance of driveways.

For internal streets, include a minimum five foot wide landscaped buffer along roadways adjacent to property lines.

Driveways and Internal Circulation

Design Guidelines

- Minimize the number and width of driveways and curb cuts. Design shared driveways to the greatest extent possible.
- Create textures, patterns, and colors in the design of paved parking areas or entries to create visual interest and to distinguish them from other paved areas. Do not design large monolithic areas of single color untextured paving.
- Use accent paving such as textured paving and paving blocks in driveways.
- Design driveways to be well lighted and distinct from building lighting, common housing lighting, or appropriate scaled street lighting.
- When designing streets with cul-de-sacs, “live-end” cul-de-sacs are preferred. “Live-end” cul-de-sacs provide for pedestrian access at the ends to adjoining streets, open spaces, parks, and trail systems while still permitting the cul-de-sac to be used as a common outdoor space.
- For driveway access with ten or fewer units, consider a T-shaped turnaround. A dimension of 20 feet by 80 feet will accommodate most vehicles.
- Consider using Hollywood driveways to reduce the amount of impervious area and enhance the appearance of driveways (refer to the County’s stormwater quality design standards).
- Design traffic islands with attractive, low-maintenance shrubs or perennials, appropriate for the soil and moisture conditions.
- Dead end driveways should be less than 150 feet long, and have appropriate turnarounds as needed.
- Minimum widths for internal streets or driveways, per Fire Department Standards:
 - Uncurbed driveway with no parallel parking when fire lane is not necessary – 16’
 - Curbed internal street with no parallel parking – 20’
 - Curbed internal street with parallel parking on one side – 28’
 - Curbed internal street with parallel parking on both sides - 36’
- Street design and width should be confirmed with the Fire Department.

Paseos/Pedestrian Paths

Design Guidelines
Paseos provide common outdoor spaces and allow for pedestrian access through the development. Front door access to units may be provided via paseos, with these spaces acting as both public and semi-private spaces. These spaces could be further enhanced to be user-friendly through the use of appropriate pedestrian amenities such as seating, lighting, fountains, and landscaping. Paseos can also function as outdoor gathering places for residents, and provide additional recreational amenities such as game tables, small children’s play area, picnic tables, outdoor gazebo, community garden, and other smaller community amenities.

Paseos that terminate on a public street should be attractively landscaped and identified with an entry gateway.

Design Guidelines

- Locate paseos where vehicular connections are infeasible due to project or site constraints.
- Visually identify paseos by special paving and pedestrian-scale lighting.
- On pedestrian pathways, include amenities such as trellises, trees, seating, lighting and landscaping that visually extend the open spaces for safe pedestrian use. Provide lighting for safety and visual access.
- Front buildings onto paseos with windows, entries, and balconies to increase the visual surveillance of the area for safety and security.
- Limit the length of the paseo walkway and provide perpendicular connections from the paseo between buildings to parking areas, public streets, and open spaces.
- Design paseos to provide sunlight during the day, whenever feasible.
- Allow a paseo to be named as a special place with buildings lining the paseos taking their addresses from the paseo.
- Direct roof runoff to bioretention planters and landscaping strips in the paseos for treatment, whenever possible.

Parking

Parking is critical to the success of a multifamily residential project. Parking needs to be convenient, accessible, safe, screened from street views, and well landscaped to reduce summer heat gain, and controlled stormwater runoff. With the exception of higher intensity urban areas, mixed use villages, and town centers where apartment buildings are more common, most new apartment designs are two- to three-story walk-up structures. These are often referred to as garden-style apartments with a mix of unit types serving singles, couples, and young families.

Minimal parking requirements by Category are indicated in Table 3.10. Any variations are subject to justification by the project being in accordance to overall provisions of these Design Guidelines.

Two basic strategies can be applied to the site layout of multifamily apartments:
1. Internalized parking lots with good configuration layouts and buildings that ring the site and allow for casual surveillance. These layouts should be encouraged.

2. Externalized parking with buildings that cluster around a central common open space with parking oriented to the exterior.

In most developments, both approaches are utilized to conform to site conditions.

External parking increases building setbacks from adjacent properties, and provides more direct access to on-site community recreational facilities. However, external parking lots become more exposed to the surrounding community.

Design Guidelines

- **The minimum number of parking spaces is regulated by the Zoning Code. Reductions to the minimum standards can be made for Category III projects. The Zoning Code further requires that a portion of the parking be covered.**
- Locate parking and vehicle access away from street corners.
- Screen parking areas visible from the street right-of-way with landscaping, berms, or decorative visual barriers. Discourage use of fences or walls as the preferred method of screening parking from the street.
- Buffer parking areas from adjacent residential properties. Provide landscaping adjacent to and within parking areas to screen vehicles from view.
- Multiple smaller parking lots are preferred over single, large lots to minimize the expansive appearance of parking areas. However, the parking lot design should not negatively impact the design of the project.
- If large parking areas are needed, design a clearly defined pedestrian path inside the parking area that provides safe and easy access to and from buildings and sidewalks.
- Plant trees and shrubs to soften the overall impact of parking areas and to provide shade and noise reduction.
- Locate secure bicycle parking close to, and with direct access to, residential buildings and entries.
- Set back parking adjacent to dwelling units to provide a buffer between the parking area and living areas and to reduce the potential impacts of noise and light on adjacent residences. Provide appropriate buffers through a combination of landscaping, walkways, private outdoor patios and/or low walls.
- Do not allow parking and paving to directly touch against residential buildings.
- Incorporate stormwater quality measures into the parking areas to treat the storm runoff and enhance the parking areas by providing shade and reducing the amount of paving. Vehicle wash areas shall be designed to the latest stormwater quality design standards.
- Consider subterranean parking for Category III projects located along three and four lane roads, with paseos or similar public spaces as entrances to the complex, and allowing better utilization of site area.
Paved surface parking areas should be separated from the primary residential building by a minimum four foot wide walkway and/or a minimum seven foot wide landscape strip.

Residential parking spaces shall be clearly marked and located closest to the residential unit, to the greatest extent possible.

For affordable housing projects, parking requirements may be lowered to 90% of the County parking requirements subject to on-site management to avoid multiple persons and families occupying individual units that cannot accommodate their parking needs.

On-site parking spaces should be assigned to individual units.

Additional visitor parking equal to 0.5 spaces per unit shall be provided with spaces clearly signed and labeled and managed to avoid misuse by residents.

Meet County of Sacramento ADA requirements and standards.

Meet County standards for parking lot shading.

Condominiums, townhouses, or similarly owned units where certain parking spaces are deeded, granted by easement, or otherwise permanent assigned spaces shall be located to be visible from a window(s) of the unit to which it is assigned, whenever possible, unless such spaces are contained within a garage. The location and regulation of unassigned spaces shall be placed under the control of the project homeowners’ association.

Tuck under and subterranean parking may be permitted for projects in the RD-20 or higher density zoning districts, located along three and four lane roads, with paseos or other public spaces as entrances to the complex to better utilize the site.

Bike Parking

Design Guidelines

- For Categories II and III, a minimum of one bike parking space per unit shall be provided with guest bike parking at one space per 10 units provided on site. Private storage areas in units may qualify for bike parking. Bike parking for guests should be clustered in common areas for easy convenience.

3.3 Site Details

3.3.1 Building Design

Design Principle

Building design elements shall respect, enhance, and contribute positively to the predominant characteristic of existing developments in the neighborhood. Variety and distinctiveness in design is desirable.

Rationale

Quality in detail and design contributes not only to the long-term value of a project, but to the neighborhood as well. The use of different “styles” and materials is intended to
add variety to the buildings just as is often found in neighborhoods that have evolved over time.

Building Articulation and Design for Privacy

Design Guidelines
- Design large projects (greater than 50 units) to contain a variety of building elevations. Avoid excessive repetition of elevations throughout a neighborhood or project with little or no differentiation.
- Minimize upper story views into adjacent private yards. Multifamily projects should be designed to respect the privacy of surrounding uses.

Sustainable Building Design

Design Guidelines
- Utilize sustainable design strategies in building design and reflect this practice in the site design, building orientation, on-site stormwater management, and material selection.
- Employ energy conservation strategies including shading devices and use of trees to reduce the heat gain of buildings and parking lots; selection of colors to reduce heat gain; and use of high-quality insulation materials to reduce energy consumption (especially the use of air conditioning during hot summer months), to the greatest extent possible.
- Use water conserving features in irrigation systems and drought-tolerant plants in landscaping.
- Design and use heat sinks to be compatible with the development.
- Employ energy efficiency appliances and lighting practices to the greatest extent possible.

Entry Features

Design Guidelines
- Design entry features such as porches, stoops, balconies, and porticos to add visual interest to buildings.
- Design entry features that are clearly visible and distinguishable as the primary entrance.
- Design the depths of decks, stoops, and porches at a width deep enough for a chair and table.
- Provide at least one building entry on an accessible route to accommodate people with disabilities.
Windows and Openings

Design Guidelines

- Design windows and doors to add variety and interest to the building design. Avoid grids of repeated windows.
- Use double glazed windows, glass block, roof top sky lights, and opaque window glass to reduce noise and visual intrusion into adjoining units.
- For stepped up units, use high and translucent windows for the upper stories.
- For developments facing the street, provide large window openings to maximize natural ventilation and sunlight and allow visual surveillance of the street.

Garages and Carports

Design Guidelines

- Minimize garage doors along street fronts to appear less dominant in the street-facing building facades. To reduce the visual dominance of garages along the street, garage doors can be recessed within the building design, turned perpendicular to the street, and divided into smaller individual one car entries.
- Locate garages and carports to the side and rear of developments. Garage carports and accessory buildings should not be located on front yards or front and side yards facing a public street.
- Vary the locations of garages to avoid the appearance of garage door rows.
- Design carport roofs in a consistent style and character as the main building, except as needed to provide for solar panels or other sustainable design.
- Choose materials and colors of garages and carports to be compatible with the main building design.
- Provide lighting in carport areas.
- Fully enclose storage for boats, recreational vehicles and trailers, as well as storage sheds, when visible from the street or active adjacent uses.
- Design additional private storage spaces for individual units within carports.
- Provide solar panels integrated within carport roofs as a sustainable design strategy to conserve energy where possible.

Rooflines

Design Guidelines

- Vary roof elements to minimize the appearance of mass and bulk of buildings.
- Correspond rooflines to variations in building massing and articulation with bays, gables, dormers and strong eave elements.
- Design roofs (form, style, and pitch) to further enhance and articulate the architectural vocabulary used in the facades and to be compatible with the style
and character of the neighborhood. Generally, sloping roofs are more rural in character; flat roofs are more appropriate in urban situations.

Materials/Colors/Textures

Design Guidelines

- Use building materials that are high quality, durable, require low maintenance, and complement the design of the building.

- Use a combination of varied materials, textures, and colors. It is generally preferred that the number of materials used on the exterior be such that a clean, uncluttered design is the result.

- Consider use of “Permanent” roof materials such as concrete and clay tile because of their low maintenance and consistent appearance over time. Wood shake or shingle roofing meeting fire safety standards is also acceptable. **Composition shingles should be of the heavy laminated dimensional type, and of at least a 25-year quality.**

- Use material textures and colors to help articulate the building design.

- Use color variations to unify various building elements, and harmonize with the overall neighborhood design.

- Use color differentiation within the same multifamily project to reduce monotony, blandness, and repetitiveness within the building facades. Accentuate individual units with varying color schemes, materials, and textures to achieve greater variety, visual interest, and richness in the character of the neighborhood.

Personal Storage

Design Guidelines

- The Zoning Code requires a minimum of 80 cu. ft. enclosed storage area for each residential unit.

- Locate personal storage spaces within each unit, in common storage areas or design them as an integral part of carports and garages. Personal storage can also be designed adjacent to decks and ground floor private patio areas.

Lighting

Design Guidelines

- Design site lighting to have a scale, design, and color that best complements the character and design of the multifamily development. Internal street lighting should be compatible with site lighting throughout, creating a cohesive aesthetic for the area.

- Provide lighting in all common areas and facilities, including pedestrian and vehicular routes. The emphasis should be on lighting landscape or building surface.

- Use attractive and pedestrian-scaled lighting.

- Provide adequate lighting in open spaces.
• Provide lighting at even illumination levels, adequate to provide safe visibility. If light fixtures are visible, they should be of low intensity or have adequate diffusing lenses to minimize their brightness. Use landscaping lighting that is glare free or glare minimized.

• Lighting should be accomplished in a manner that it does not create glare for pedestrians or adjacent properties. Do not allow spillover and glare from lighting fixtures onto interior spaces of buildings and adjacent properties.

• Use lighting fixtures of high quality and durable materials.

• Limit night lighting, visible from the exterior of a building, from the project’s boundaries and from public streets and sidewalks to that necessary for security, safety, and identification. Screen night lighting from adjacent residential areas and direct in a downward manner or beyond the boundaries of the parcel on which the building is located or beyond the public right-of-way that the lighting intends to illuminate.

• Employ Energy Star appliances and energy efficient lighting in construction, to the extent feasible, consistent with the adopted Green Building Policy.

• The Zoning Code provides minimum lighting illumination standards.

• In all cases, use fully shielded fixtures for street lights.

• For street lights, use high pressure sodium lights.

• Street lights should be located between 9 and 16 feet above grade with a maximum average spacing (per block face) of 100 feet on center, aligned with the street trees on each side of the street.

• Pedestrian lighting in common areas should be between 8 and 12 feet in height.

• Lighting in parking areas should be between 10 and 14 feet in height.

• Ground level pedestrian lighting, such as bollards, should not exceed 4 feet in height.

• Use under canopy and entry lighting to illuminate the pedestrian walkway which may be shaded from streetlights. These fixtures may be recessed down lights or pendant fixtures set in the soffit or other wall mounted shaded fixtures.

• In addition to the standards set forth in this section, site and street lighting shall comply with Section 5 (Street Light Design) of the Sacramento County Improvement Standards.

3.3.2 Signage

Design Principle

Attractive entry signage should be provided at primary locations to assist residents, visitors, and emergency vehicles in wayfinding.
Rationale
Well-designed and well-lit signage provides easy wayfinding, and can contribute to the design and character of the development.

Design Guidelines
- Integrate signs of quality consistent within the design of the project.
- Design entry signs in keeping with the character of the surrounding community.
- Design monument signs in keeping with the style and character of the main building design, and locate within a landscaped area.
- Clearly mark and light vehicular and pedestrian signage for residents, visitors, and emergency vehicles.
- Design all primary entry and exit signage to the development to be clearly visible from a distance, and be well illuminated at dark.
- Provide clearly visible and lit building address signage.

3.4 Landscape / Site Elements Design

3.4.1 Landscaping

Design Principle
Residential projects should be designed to maximize opportunities for usable, attractive, and well landscaped open spaces. Landscaping includes trees, shrubbery, and ground cover. Landscaping can also include “hardscape” elements such as outdoor pedestrian amenities, play areas and play structures, walkways, plazas and gathering places, pools, sport courts, and decorative pavers.

Rationale
Landscaping can be used to complement buildings and to make a positive contribution to the aesthetics and function of the specific site and area. Landscaping helps reduce stormwater runoff, provides shade during summer months, and can provide additional habitat to local animals and birds.

Design Guidelines
- Design open space networks as a hierarchy of visual and physical movement, both within the project site and through the neighborhood. Street trees should be larger shade trees per the County’s street tree list.
- Use planted areas to enhance the appearance of structures, define site functions of outdoor spaces, and screen undesirable views of parking areas and utilities. This standard does not apply to small lot and cluster projects, as circumstances vary.
- Design exterior site design and landscaping as functional recreational spaces and/or community site amenities.
- Integrate natural attributes and topography into the multifamily development, designed as a neighborhood feature or focal point to the greatest extent possible.
• Incorporate appropriate landscaping that includes a variety of trees, shrubs, and other plantings.

• Plant unpaved areas with irrigated plant materials. Mulch unpaved areas where landscaping would be challenging to minimize weed growth and improve appearance.

• Provide on-going maintenance to identify and ensure the timely replacement of any dead or diseased vegetation.

• Design landscaping to be compatible with building design. Use trellises, arbors, cascading landscaping, vines and perimeter garden walls wherever suitable.

• Consider security issues in the landscape design of the site, including creation of barriers and screening.

• Do not allow landscaping to impede fire access to hydrant connections.

• Plant street trees at least every 25 feet on average, not exceeding 40 feet.

• Limit surface paving, driveways, parking, and hardscape materials in landscape front yards to 25% of the total front yard area.

• Landscaped areas shall be properly maintained.

• Plants, shrubs, and trees shall be selected that are appropriate for the local climate and site conditions. Use drought tolerant planting material to the greatest extent possible in the selection of landscape materials.

• Along streets with greater than 50,000 vehicles ADT, plant trees conducive to absorbing particulates including deodar cedar, valley oak, and redwoods.

Grades and Grading

Design Guidelines

- To minimize grading, follow natural contours to the greatest extent possible.
- Round and contour grading to blend with the natural terrain.
- Design the use of slopes based on aesthetic ease of landscaping considerations.
- Incorporate natural vegetation within the design to the greatest extent possible.

Tree Preservation

Design Guidelines

- Preserve and incorporate existing and native trees within the project site design to the greatest extent possible.
- Retain existing mature trees in landscape and building location plans to the greatest extent possible.
Irrigation

Design Guidelines

- Provide all landscaped areas with irrigation systems. Head-to-head spray irrigation is recommended for turf and groundcover, and drip irrigation is recommended for shrubs and trees to provide deeper, more even watering.
- Avoid overspray onto sidewalks and adjacent properties.
- Use automatic controllers with rain shut-off valves for water conservation.
- Screen irrigation systems from public view by aesthetic landscaping.
- All landscaped features designed as stormwater quality measures shall be maintained for the life of the project. Proper maintenance of these features will be ensured by the local agency through a maintenance covenant that the property owners sign before the approval of the project.

3.4.2 Fencing and Walls

Design Principle

Fencing and walls in multifamily developments should complement the design of buildings and help define boundaries, without being visually and physically obtrusive.

Rationale

The design of fencing and walls can enhance the appearance and character of the development. Fencing helps control unwanted intrusions into private and common open spaces, increases safety, and helps define, frame, and control private, public, and semi-public spaces. These can also serve as signs, lighting, outdoor seating, and places for public art.

Design Guidelines

- Design sound walls, masonry walls or fences to minimize visual monotony through changes in plane, height, material, texture or significant landscape massing where appropriate.
- Design fencing as an integral part of the site design. Use attractive fencing designs and materials, such as wrought iron, brick mix, or shortened walls with fencing. Fencing should be attractive from both sides of the property line.
- Use landscaping as screen fences to the greatest extent possible.
- Set back fencing on street sides as much as possible and soften with landscaping to minimize a “fortress” appearance.
- Solid fencing, walls, large hedges, or other similar barriers exceeding four feet in height are discouraged within street-side setback areas.
- Provide solid fencing between multifamily developments and single-family developments, except where pedestrian connections are needed.
3.4.3 Paving and Hardscaping

Design Principle

Multifamily developments should incorporate pervious and decorative paving treatments that permit infiltration of stormwater which provide run-off reduction.

Rationale

Quality paving treatment in areas such as parking lots, common areas, and pedestrian walkways can enhance the visual appearance of a project and reduce stormwater runoff.

Design Guidelines

- Use alternative paving material such as brick, modular pavers, stamped, and integral colored concrete for walkways.
- To reduce stormwater runoff in parking lots, use permeable materials such as porous asphalt-concrete (AC), grasscrete, or interlocking modular pavers in those areas with traffic volumes and soil conditions can support such materials, and where consistent with fire apparatus equipment needs.
- Create well designed planting strips to direct drainage and increase percolation of water runoff. Planting strips designed as vegetated swales and bio-retention facilities can be used for stormwater quality treatment.
- Use decorative paving at crosswalks, at primary intersections, and common spaces.

3.4.4 Services and Utilities

Design Principle

Multifamily developments should provide easily accessible service facilities to all dwelling units that should not be visible from the street to the greatest extent possible.

Rationale

Location and design of common service facilities should be easy for residents to find and use. Good location and design minimize auto and pedestrian hazards.

Mechanical and HVAC

Design Guidelines

- Incorporate mechanical equipment into the design of the building to the greatest extent possible.
- Locate mechanical equipment on building roofs to the greatest extent possible, screened from view. Screening should be either a solid wall/fence or landscaping.
- Locate all mechanical equipment in areas with the least amount of auto and pedestrian traffic.
- Use low-sound emitting mechanical equipment, with consideration of sound impacts from mechanical equipment on surrounding environments.
Accessory Structures

Design Guidelines

- Design materials and colors of accessory structures, such as mailboxes and laundry rooms, to be consistent with the main buildings.
- Design roof pitch of accessory structures to be consistent with the predominant roof slope of the main buildings.

Trash and Recycling

Design Guidelines

- Screen all trash and recycling enclosures from public view by landscaping and locate enclosures to minimize visual conflicts with units, common open spaces, or adjacent properties.
- Provide easy access to trash removal enclosures, with curbs and other traffic restraints avoided in these areas.
- Use durable materials for trash and recycling structures and enclosures, and complement colors of trash and recycling structures to be consistent with the main buildings.
- Provide trash and recycling enclosures in a safe and secure location.
- Locate trash collection areas and facilities so as to minimize noise intrusion on on-site and adjacent off-site living areas.
- For small lot single-family residences with individual trash and recycling receptacles, trash and recycling storage should be provided to the side or rear yard of the residence and/or screened from public view. Site plans shall indicate how trash collection is managed.
- Trash enclosure areas shall be designed to the County’s latest stormwater quality source control design standards.
- The Zoning Code provides setback standards for the location of trash enclosures.